El Parkinson es una enfermedad neurodegenerativa generalizada que afecta a más de 10 millones de personas en todo el mundo, según datos de la Parkinson’s Foundation. Se caracteriza fundamentalmente por la degeneración selectiva de las neuronas dopaminérgicas, que conduce a la pérdida del neurotransmisor dopamina.
Uno de los tratamientos habituales es la terapia con levodopa (L-dopa), un aminoácido que actúa como precursor inmediato de la dopamina. Sin embargo, su uso a largo plazo se asocia con la aparición de movimientos anormales e involuntarios y complicaciones motoras en los pacientes.
Investigadores del Grupo de Ingeniería Química y Ambiental (GIQA) de la Universidad Rey Juan Carlos, junto con el Departamento de Ingeniería y Procesos Químicos de la Universidad de Strathclyde (Escocia, Reino Unido), han logrado alcanzar la liberación controlada del fármaco administrado y mantenerlo así de forma prolongada en el torrente sanguíneo, evitando la generación de altibajos en su concentración.
Los resultados, publicados en la revista científica Journal of Materials Chemistry, podrían emplearse para superar las complicaciones de la administración oral discontinua. “Nuestro estudio ha permitido la liberación sostenida y controlada de L-dopa desde nanopartículas de sílice porosa (MSN), en función de variaciones del pH, respondiendo así a estímulos biológicos”, indica Rafael García-Muñoz, investigador del grupo GIQA e investigador principal del estudio.
El desarrollo de nanopartículas sensibles a estímulos biológicos de tipo endógeno, como el pH, o concentraciones de metabolitos y enzimas que puedan desencadenar o ralentizar la liberación del fármaco encapsulado en el interior de las nanopartículas, es un campo de enorme interés para superar las complicaciones derivadas de la administración convencional de fármacos. Por tanto, los resultados de este estudio podrían emplearse como tratamiento alternativo para la enfermedad del Parkinson.
Diseño innovador para la creación de fármacos
Disciplinas científicas como la nanociencia y la nanotecnología -campos de la ciencia que diseñan, obtienen, fabrican y manipulan de manera controlada materiales, sustancias y dispositivos en el rango de tamaño de 1 a 1000 nanómetros, siendo 1 nanómetro una millonésima parte de un milímetro- han permitido que, específicamente en medicina, se puedan desarrollar e investigar nanopartículas de este tamaño para ser utilizadas como nanovehículos adecuados para superar las limitaciones asociadas con las formulaciones de medicamentos convencionales.
Durante los ensayos realizados, se sintetizaron las nanopartículas en base a un nuevo concepto de carácter global desarrollado por primera vez por el grupo de investigación de la URJC: los agentes directores de estructura farmacológica (DSDA), que ha sido probado con éxito para el desarrollo y diseño innovador de este tipo de nanopartículas de sílice mesoestructuradas (MSN).
Liberación controlada del medicamento
En la administración convencional por vía oral, la L-dopa se absorbe completamente en el duodeno y las primeras porciones del yeyuno (parte del intestino delgado, entre el duodeno y el íleon) y, por lo tanto, se une al torrente sanguíneo desde el intestino. “En el estudio, planteamos la hipótesis de que la L-dopa se libera desde las nanopartículas de sílice en función del tamaño y la solubilidad del fármaco en el medio biológico en el que se encuentran y también en función de las interacciones químicas superficiales entre el fármaco y las paredes de las nanopartículas, permitiendo una liberación continua durante varios días”, señala Rafael García-Muñoz.
En el laboratorio, la liberación in vitro de la L-dopa se realizó en dos medios diferentes imitando la respuesta a diversos estímulos biológicos en el tracto gastrointestinal, por un lado, en un fluido gástrico simulado en las condiciones de acidez del estómago (a pH 1,2) y, por otro, en un fluido simulado en las condiciones del intestino delgado (a pH 7,4). En este sentido, los resultados obtenidos por el equipo de investigación de la URJC muestran que la liberación de L-dopa apenas se produce en las condiciones ácidas simuladas a pH 1,2, evitando la liberación prematura en el estómago, mientras que para condiciones intestinales a pH 7,4, la liberación de L-dopa ocurre de manera continua y sostenida en el tiempo, objetivos claves para mejorar la calidad de vida de los pacientes.